Sottospazi vettoriali di Ruini Beatrice - Bookdealer | I tuoi librai a domicilio
1.303.734,11€  incassati dalle librerie indipendenti
1.303.734,11€  incassati dalle librerie indipendenti
Cerca un libro o una libreria

Sottospazi vettoriali

  • Autore: Ruini Beatrice
  • Editore: Pitagora
  • Isbn: 9788837119164
  • Categoria: Matematica
  • Numero pagine: 44
  • Data di Uscita: 01/11/2015
5,00 €
Esaurito

Tab Article

Questo fascicolo è il terzo di una serie di fascicoli monotematici riguardanti la Teoria degli Spazi Vettoriali. Nel primo fascicolo si è introdotta la definizione di una struttura algebrica denominata Spazio Vettoriale. Nel secondo si è definito il concetto di "sottospazio vettoriale", ovvero una sottostruttura algebrica con le stesse proprietà algebriche dello spazio ambiente. In questo fascicolo introduciamo e definiamo il concetto di "base di uno spazio vettoriale", che permette di descrivere tutti i vettori di uno spazio vettoriale. Si illustrano delle basi standard per gli spazi vettoriali Kn e Mm;n(K), e si esplicitano due metodi costruttivi per ottenere una base di uno spazio vettoriale. Mostriamo come, grazie ad una base di uno spazio vettoriale V è possibile identificare lo stesso spazio vettoriale V con lo spazio vettoriale Kn, dove n rappresenta la cardinalità della base di V e K è il campo di V . Si determina una relazione tra le cardinalità delle basi di sottospazi intersezione e sottospazi somma (Teorema di Grassmann). Si definiscono i legami tra due basi di uno stesso spazio vettoriale e si illustra un metodo per costruire una base a partire da una base data. In questo fascicolo faremo riferimento alle nozioni e notazioni di [R] e [R1] e si consiglia lo svolgimento degli esercizi di [BRS].

I librai consigliano anche